It Really Does Matter

Massive matter of mass

 

Matter should not be confused with mass, as the two are not quite the same in modern physics. For example, mass is a conserved quantity, which means that its value is unchanging through time, within closed systems.

However, matter is not conserved in such systems, although this is not obvious in ordinary conditions on Earth, where matter is approximately conserved.

Still, special relativity shows that matter may disappear by conversion into energy, even inside closed systems, and it can also be created from energy, within such systems.

However, because mass (like energy) can neither be created nor destroyed, the quantity of mass and the quantity of energy remain the same during a transformation of matter (which represents a certain amount of energy) into non-material (i.e., non-matter) energy. This is also true in the reverse transformation of energy into matter.

Dark Matter

 

ColeyArtAstro-BWPOSTER2

What is the Matter with Matter

Matter – The term has often been used in reference to a substance (often a particle) that has rest mass. Matter is also used loosely as a general term for the substance that makes up all observable physical objects.

Matter should not be confused with mass, as the two are not quite the same in modern physics. For example, mass is a conserved quantity, which means that its value is unchanging through time, within closed systems. However, matter is not conserved in such systems, although this is not obvious in ordinary conditions on Earth, where matter is approximately conserved.

Still, special relativity shows that matter may disappear by conversion into energy, even inside closed systems, and it can also be created from energy, within such systems.

However, because mass (like energy) can neither be created nor destroyed, the quantity of mass and the quantity of energy remain the same during a transformation of matter (which represents a certain amount of energy) into non-material (i.e., non-matter) energy. This is also true in the reverse transformation of energy into matter.

All objects we see with the naked eye are composed of atoms. This atomic matter is in turn made up of interacting subatomic particles—usually a nucleus of protons and neutrons, and a cloud of orbiting electrons. Typically, science considers these composite particles matter because they have both rest mass and volume. By contrast, massless particles, such as photons, are not considered matter, because they have neither rest mass nor volume.

However, not all particles with rest mass have a classical volume, since fundamental particles such as quarks and leptons (sometimes equated with matter) are considered “point particles” with no effective size or volume. Nevertheless, quarks and leptons together make up “ordinary matter,” and their interactions contribute to the effective volume of the composite particles that make up ordinary matter.

Matter commonly exists in four states (or phases): solid, liquid and gas, and plasma. . However, advances in experimental techniques have revealed other previously theoretical phases, such as Bose–Einstein condensates and fermionic condensates.

A focus on an elementary-particle view of matter also leads to new phases of matter, such as the quark–gluon plasma. For much of the history of the natural sciences people have contemplated the exact nature of matter. The idea that matter was built of discrete building blocks, the so-called particulate theory of matter, was first put forward by the Greek philosophers Leucippus (~490 BC) and Democritus (~470–380 BC).

Albert Einstein showed that ultimately all matter is capable of being converted to energy (known as mass-energy equivalence) by the famous formula E = mc2, where E is the energy of a piece of matter of mass m, times c2 the speed of light squared. As the speed of light is 299,792,458 metres per second (186,282 mi/s), a relatively small amount of matter may be converted to a large amount of energy. An example is that positrons and electrons (matter) may transform into photons (non-matter). However, although matter may be created or destroyed in such processes, neither the quantity of mass or energy change during the process.

 

 

transport impact earth

Transportearth burning up

The environmental impact of transport is significant because it is a major user of energy, and burns most of the world’s petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide, for which transport is the fastest-growing emission sector. By subsector, road transport is the largest contributor to global warming.

Environmental regulations in developed countries have reduced the individual vehicles emission; however, this has been offset by an increase in the number of vehicles, and more use of each vehicle. Some pathways to reduce the carbon emissions of road vehicles considerably have been studied. Energy use and emissions vary largely between modes, causing environmentalists to call for a transition from air and road to rail and human-powered transport, and increase transport electrification and energy efficiency.

Other environmental impacts of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transportation emissions globally, it is predicted that there will be significant positive effects on Earth’s air quality,acid rainsmog and climate change.

The health impact of transport emissions is also of concern. A recent survey of the studies on the effect of traffic emissions on pregnancy outcomes has linked exposure to emissions to adverse effects on gestational duration and possibly also intrauterine growth.

Deflect some Transport Impact –

Wind power

Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor. Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months. While a wind farm may cover a large area of land, many land uses such as agriculture are compatible, with only small areas of turbine foundations and infrastructure made unavailable for use.

There are reports of bird and bat mortality at wind turbines, as there are around other artificial structures. The scale of the ecological impact may, or may notbe significant, depending on specific circumstances. Prevention and mitigation of wildlife fatalities, and protection of peat bogs, affect the siting and operation of wind turbines.

There are conflicting reports about the effects of noise on people who live very close to a wind turbine.